LTC2995 [Linear Systems]

Temperature Sensor and Dual Voltage Monitor with Alert Outputs; 温度传感器和双通道电压监视器与警报输出
LTC2995
型号: LTC2995
厂家: Linear Systems    Linear Systems
描述:

Temperature Sensor and Dual Voltage Monitor with Alert Outputs
温度传感器和双通道电压监视器与警报输出

传感器 温度传感器 监视器
文件: 总20页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2995  
Temperature Sensor and  
Dual Voltage Monitor with  
Alert Outputs  
FEATURES  
DESCRIPTION  
The LTC®2995 is a high accuracy temperature sensor  
and dual supply monitor. It converts the temperature of  
an external diode sensor and/or its own die temperature  
to an analog output voltage while rejecting errors due to  
noise and series resistance. Two supply voltages and the  
measured temperature are compared against upper and  
lower limits set with resistive dividers. If a threshold is  
exceeded, the device communicates an alert by pulling  
low the correspondent open drain logic output.  
n
Monitors Temperature and Two Voltages  
n
Voltage Output Proportional to Temperature  
n
Adjustable Thresholds for Temperature and Voltage  
n
±±1° Remote Temperature Accuracy  
n
±ꢀ1° ꢁnternal Temperature Accuracy  
n
1.5% Voltage Threshold Accuracy  
n
3.5ms Update Time  
n
2.25V to 5.5V Supply Voltage  
n
Input Glitch Rejection  
n
Adjustable Reset Timeout  
The LTC2995 gives 1°C accurate temperature results  
using commonly available NPN or PNP transistors or  
temperaturediodesbuiltintomoderndigitaldevices. Volt-  
ages are monitored with 1.5% accuracy. A 1.8V reference  
outputsimplifiesthresholdprogrammingandcanbeused  
as an ADC reference input.  
n
220μA Quiescent Current  
n
Open Drain Alert Outputs  
n
Available in 3mm × 3mm QFN Package  
APPLICATIONS  
TheLTC2995providesanaccurate, lowpowersolutionfor  
temperature and voltage monitoring in a compact 3mm ×  
3mm QFN package.  
n
Network Servers  
n
Core, I/O Voltage Monitors  
n
Desktop and Notebook Computers  
Environmental Monitoring  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
TYPICAL APPLICATION  
Dual OV/UV Supply and Single OT/UT Remote Temperature Monitor  
VPTAT vs Remote  
Diode Temperature  
2.5V  
1.2V  
1.8  
1.6  
1.4  
1.2  
ASIC  
+
V
D
CC  
PS  
470pF  
0.1ꢀF  
TEMPERATURE  
SENSOR  
DS  
D
194k  
10.2k  
45.3k  
VH1  
LTC2995  
VL1  
VH2  
VL2  
4mV/K  
V
1.0  
0.8  
PTAT  
64.4k  
10.2k  
45.3k  
OT T > 125°C  
UT T < 75°C  
+10%  
SYSTEM  
MONITOR  
TO2  
TO1  
OV  
75 100  
125 150  
REMOTE DIODE TEMPERATURE (°C)  
–50 –25  
0
25 50  
–10%  
2995 TA01b  
UV  
V
VT2  
VT1  
GND TMR  
REF  
20k  
5nF  
20k  
140k  
2995 TA01a  
2995f  
1
LTC2995  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes ±, ꢀ)  
V
.............................................................. –0.3V to 6V  
CC  
TOP VIEW  
+
TMR, D , D , DS, PS, V  
, V ........ –0.3V to V + 0.3V  
PTAT REF  
CC  
UV, OV, TO1, T02 .......................................... –0.3V to 6V  
VH1, VL1, VH2, VL2, VT1, VT2..................... –0.3V to 6V  
Operating Ambient Temperature Range  
LTC2995C................................................ 0°C to 70°C  
LTC2995I .............................................–40°C to 85°C  
LTC 2995H......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
20 19 18 17 16  
UV  
15  
14  
13  
12  
11  
VL1  
VH2  
VL2  
VT2  
VT1  
1
2
3
4
5
OV  
TO2  
T01  
21  
8
V
REF  
6
7
9 10  
UD PACKAGE  
20-LEAD (3mm × 3mm) PLASTIC QFN  
T
= 150°C, θ = 59°C/W  
JA  
JMAX  
EXPOSED PAD PCB GROUND CONNECTED OPTIONAL  
ORDER INFORMATION  
LEAD FREE FꢁNꢁSH  
LTC2995CUD#PBF  
LTC2995IUD#PBF  
LTC2995HUD#PBF  
TAPE AND REEL  
PART MARKꢁNG*  
LFQV  
PA°KAGE DES°RꢁPTꢁON  
TEMPERATURE RANGE  
LTC2995CUD#TRPBF  
LTC2995IUD#TRPBF  
LTC2995HUD#TRPBF  
0°C to 70°C  
20-Lead (3mm × 3mm) Plastic QFN  
20-Lead (3mm × 3mm) Plastic QFN  
20-Lead (3mm × 3mm) Plastic QFN  
LFQV  
–40°C to 85°C  
–40°C to 125°C  
LFQV  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = ꢀ51°, V°° = 3.3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
°ONDꢁTꢁONS  
MꢁN  
2.25  
1.7  
TYP  
MAX  
5.5  
UNꢁTS  
l
l
l
V
Supply Voltage  
V
V
CC  
UVLO  
Supply Undervoltage Lockout Threshold  
Average Supply Current  
V
CC  
Falling  
1.9  
2.1  
I
CC  
220  
300  
ꢀA  
Temperature Measurement  
Reference Voltage  
V
LTC2995  
1.797  
1.793  
1.790  
1.787  
1.8  
1.8  
1.8  
1.8  
1.803  
1.804  
1.807  
1.808  
V
V
V
V
REF  
l
l
l
LTC2995C  
LTC2995I  
LTC2995H  
l
V
Load Regulation  
I
=
LOAD  
200μA  
1.5  
mV  
ꢀA  
REF  
Remote Diode Sense Current  
–8  
–192  
2995f  
2
LTC2995  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = ꢀ51°, V°° = 3.3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
°ONDꢁTꢁONS  
MꢁN  
TYP  
3.5  
4
MAX  
UNꢁTS  
ms  
l
T
Temperature Update Interval  
5
conv  
K
V
V
Slope  
mV/K  
mV  
Ideality Factor η = 1.004  
T
PTAT  
PTAT  
Load Regulation  
I
=
200μA  
1.5  
1
LOAD  
T
T
Internal Temperature Accuracy  
0.5  
2
°C  
°C  
int  
T
AMB  
= –40°C to 125°C  
0°C to 85°C (Notes 3, 4)  
–40°C to 0°C (Notes 3, 4)  
85°C to 125°C (Notes 3, 4)  
0.25  
0.25  
0.25  
1
1.5  
1.5  
°C  
°C  
°C  
Remote Temperature Error, η = 1.004  
RMT  
Temperature Noise  
0.15  
0.01  
°C  
RMS  
°C  
/√Hz  
°C/V  
°C  
RMS  
l
l
T
T
Temperature Error vs Supply  
0.5  
1
VCC  
RS  
Series Resistance Cancellation Error  
R
SERIES  
= 100Ω  
0.25  
Temperature and Voltage Monitoring  
l
l
l
l
l
V
Undervoltage/Overvoltage Threshold  
VT1, VT2 Offset  
492  
–3  
2
500  
–1  
5
508  
1
mV  
°C  
UOT  
OFF  
T
ΔT  
VT1, VT2 Temperature Hysteresis  
UV, OV  
10  
2
°C  
HYST  
t
I
t
Input 5mV Above/Below Threshold  
0.5  
ms  
nA  
UOD  
VH1, VL1, VH2, VL2, VT1, VT2, Input Current  
UV/OV Time-Out-Period  
20  
IN  
C
TMR  
C
TMR  
= TMR Open  
= 1nF  
0.5  
10  
ms  
ms  
UOTO  
l
l
5
20  
I
TMR Current  
2.5  
ꢀA  
TMR  
Three State Pins DS, PS  
l
l
l
l
V
V
PS, DS Input High Threshold  
PS, DS Input Low Threshold  
PS, DS High, Low Input Current  
Allowable Leakage Current  
V
V
– 0.4  
V – 0.1  
CC  
V
V
DS,PS(H,TH)  
DS,PS(H,TL)  
DS,PS(IN,HL)  
DS,PS(IN,Z)  
CC  
0.1  
0.4  
4
I
I
DS, PS at 0V or V  
ꢀA  
ꢀA  
CC  
1
Digital Outputs  
l
l
V
OH  
High Level Output Voltage,  
TO1, TO2, UV, OV  
I = –0.5μA  
I = 3mA  
– 1.2  
CC  
V
V
V
Low Level Output Voltage,  
TO1, TO2, UV, OV  
0.4  
OL  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Remote diode temperature, not LTC2995 temperature.  
Note 4: Guaranteed by design and test correlation.  
Note ꢀ: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
2995f  
3
LTC2995  
TIMING DIAGRAMS  
VHn Monitor Timing  
VLn Monitor Timing  
V
VHn  
V
VLn  
UOT  
UOT  
t
t
UOTO  
t
t
UOTO  
UOD  
UOD  
UV  
1V  
OV  
1V  
2995 TD01  
2995 TD02  
VHn Monitor Timing (TMR Pin Strapped to V°°  
)
VLn Monitor Timing (TMR Pin Strapped to V°°  
)
V
V
UOT  
VHn  
VLn  
UOT  
t
t
t
t
UOD  
UOD  
UOD  
UOD  
UV  
1V  
OV  
1V  
2995 TD03  
2995 TD04  
2995f  
4
LTC2995  
TA = ꢀ51°, V°° = 3.3V unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Remote Temperature Error  
vs Ambient Temperature  
ꢁnternal Temperature Error  
vs Ambient Temperature  
Temperature Error with LT°ꢀ995 at  
Same Temperature as Remote Diode  
3
2
3
2
3
2
T
= T  
REMOTE  
T
= 25°C  
INTERNAL  
REMOTE  
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
(°C)  
–50 –25  
0
25 50 75 100 125 150  
(°C)  
T
(°C)  
T
A
T
A
A
2995 G01  
2995 G02  
2995 G03  
Temperature Error vs Supply  
Voltage  
Remote Temperature Error  
vs °DE°OUPLE (Between D+ and D)  
Remote Temperature Error  
vs Series Resistance  
0.6  
0.4  
0.2  
0
6
4
6
4
2
0
2
0
–0.2  
–0.4  
–2  
–4  
–6  
–2  
–4  
–6  
–0.6  
6
2
3
4
5
0
200  
400  
600  
800 1000 1200  
0
2
4
6
8
10  
V
(V)  
SERIES RESISTANCE (Ω)  
DECOUPLE CAPACITOR (nF)  
CC  
2995 G04  
2995 G05  
2995 G06  
UVLO vs Temperature  
V°° Rising, Falling  
Buffered Reference Voltage  
vs Temperature  
VPTAT Noise vs Averaging Time  
0.20  
0.15  
0.10  
0.05  
0
2.2  
2.0  
1.8  
1.6  
1.810  
1.805  
1.800  
1.795  
1.790  
V
CC  
RISING  
FALLING  
CC  
V
10  
AVERAGING TIME (ms)  
100  
1000  
0.01  
0.1  
1
100 125 150  
–50 –25  
0
25 50 75  
(°C)  
100 125 150  
–50 –25  
0
25 50 75  
(°C)  
T
T
A
A
2995 G07  
2995 G08  
2995 G09  
2995f  
5
LTC2995  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ꢀ51°, V°° = 3.3V unless otherwise noted.  
Load Regulation of VREF  
Voltage vs °urrent  
Single Wire Remote Temperature  
Error vs Ground Noise  
Load Regulation of VPTAT  
Voltage vs °urrent  
10  
1
1.82  
1.81  
1.80  
1.79  
1.78  
1.22  
1.20  
1.18  
1.16  
1.14  
V
= 2.25V  
= 3.5V  
= 4.5V  
= 5.5V  
V
= 2.25V  
= 3.5V  
= 4.5V  
= 5.5V  
CC  
CC  
VAC = 50mV  
P-P  
V
V
CC  
CC  
V
V
CC  
CC  
V
V
CC  
CC  
0.1  
0.01  
2
4
100  
1000  
–4  
–2  
0
2
4
–4  
–2  
0
0.1  
1
10  
FREQUENCY (kHz)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2995 G10  
2995 G11  
2995 G12  
UV, OV, TO1, TO2 vs Output Sink  
°urrent  
Delay vs °omparator Overdrive  
1
1200  
1000  
800  
600  
400  
200  
0
0.8  
0.6  
0.4  
0.2  
0
35  
100  
0
5
10  
15  
20  
25  
30  
1
10  
I (mA)  
OVERDRIVE (mV)  
2995 G14  
2995 G13  
Reset Timeout Period  
vs °apacitance  
Supply °urrent vs Temperature  
10000  
1000  
100  
10  
250  
240  
230  
220  
210  
200  
1
75  
100 125 150  
1000  
–50 –25  
0
25 50  
(°C)  
0.1  
1
10  
100  
T
TMR PIN CAPACITANCE (nF)  
A
2995 G16  
2995 G15  
2995f  
6
LTC2995  
PIN FUNCTIONS  
+
+
D : Diode Sense Current Source. D sources the remote  
TO1: Temperature Logic Output 1. Open drain logic output  
+
diode sensing current. Connect D to the anode of the re-  
thatpullstoGNDwhenV  
crossesthethresholdvoltage  
PTAT  
motesensordevice.Itisrecommendedtoconnecta470pF  
on pin VT1 with a polarity set by the PS pin (see Table 3  
in Applications Information). When V crosses the  
+
bypass capacitor between D and D . Larger capacitors  
PTAT  
may cause settling time errors (see Typical Performance  
threshold voltage on pin VT1 with opposite polarity, an  
additional hysteresis of 20mV is required to release TO1  
high after a delay adjustable by the capacitor on TMR. TO1  
+
Characteristics).IfD is tied to V ,theLTC2995measures  
CC  
+
the internal sensor temperature. Tie D to V if unused.  
CC  
has a weak 400kΩ pull-up to V and may be pulled above  
CC  
D : Diode Sense Current Sink. Connect D to the cathode  
V
CC  
using an external pull-up. Leave TO1 open if unused.  
of the remote sensor device. Tie D to GND for single  
wire remote temperature measurement (see Applications  
Information) or internal temperature sensing.  
TO2: Temperature Logic Output 2. Open drain logic output  
thatpullstoGNDwhenV crossesthethresholdvoltage  
PTAT  
on pin VT2 with a polarity set by the PS pin (see Table 3  
in Applications Information). When V crosses the  
DS: Diode Select Input. Three state pin that selects tem-  
PTAT  
perature sensor location. Tie DS to V to monitor the  
CC  
threshold voltage on pin VT2 with opposite polarity, an  
additional hysteresis of 20mV is required to release TO2  
high after a delay adjustable by the capacitor on TMR. TO2  
temperature of the internal diode or to GND to monitor the  
temperature of the external diode. When DS is left uncon-  
nected, the LTC2995 monitors both sensors alternately.  
has a weak 400kΩ pull-up to V and may be pulled above  
+
CC  
If D is tied to V , the LTC2995 measures the internal  
CC  
V
CC  
using an external pull-up. Leave TO2 open if unused.  
sensor temperature regardless of the state of DS.  
UV: Undervoltage Logic Output. Open drain logic output  
that pulls to GND when either the voltage at VH1 or VH2  
is below 0.5V. Held low for an adjustable delay time set  
by the capacitor connected to pin TMR. UV has a weak  
Exposed Pad: Exposed pad may be left open or soldered  
to GND for better thermal coupling.  
GND: Device Ground  
400kΩ pull-up to V and may be pulled above V using  
CC  
CC  
OV: Overvoltage Logic Output. Open drain logic output  
that pulls to GND when either the voltage at VL1 or VL2  
is above 0.5V. Held low for a programmable delay time  
set by the capacitor connected to pin TMR. OV has a weak  
an external pull-up. Leave pin open if unused.  
V : Supply Voltage. Bypass this pin to GND with a 0.1μF  
°°  
(or greater) capacitor. V operatingrangeis2.25Vto5.5V.  
CC  
400kΩ pull-up to V and may be pulled above V using  
CC  
CC  
VH±, VHꢀ: Voltage High Inputs 1 and 2. When the voltage  
an external pull-up. Leave OV open if unused.  
on either pin is below 0.5V, an undervoltage condition is  
PS: Polarity Select Input. Selects the polarity of tempera-  
triggered. Tie pin to V if unused.  
CC  
turethresholdsVT1andVT2.ConnectPStoV toconfig-  
CC  
VL±, VLꢀ: Voltage Low Inputs 1 and 2. When the voltage  
on either pin is above 0.5V, an overvoltage condition is  
triggered. Tie pin to GND if unused.  
ureVT1asundertemperatureandVT2asovertemperature  
threshold. Leave PS unconnected to configure both VT1  
and VT2 as overtemperature thresholds. Connect PS to  
GND to configure both VT1 and VT2 as undertemperature  
V
: Proportional to Absolute Temperature Voltage  
PTAT  
thresholds.TietoV iftemperaturethresholdsareunused.  
Output. The voltage on this pin is proportional to the  
CC  
selected sensor’s absolute temperature. An internal or  
external sensor is chosen with the DS pin. V  
TMR: Reset Delay Timer. Attach an external capacitor  
(CTMR) to GND to set the delay time until alerts on TO1,  
TO2, UV and OV are reset. Leaving the pin open generates  
a minimum delay of 500μs. Capacitance on this pin adds  
can  
PTAT  
drive up to 200μA of load current and up to 1000pF of  
capacitive load. For larger load capacitances insert a 1k  
an additional 8ms/nF reset delay time. Tie TMR to V to  
CC  
bypass the timer.  
2995f  
7
LTC2995  
PIN FUNCTIONS  
resistor between V  
and the load to ensure stability.  
VT±: Temperature Threshold 1. When V  
crosses the  
PTAT  
PTAT  
V
is pulled low when the supply voltage goes below  
voltage on VT1 with a polarity set by the PS pin, TO1 is  
PTAT  
the under voltage lockout threshold.  
pulled low. Tie VT1 to GND if unused.  
V
: Voltage Reference Output. V  
provides a 1.8V  
VTꢀ: Temperature Threshold 2. When V  
crosses the  
REF  
REF  
PTAT  
reference voltage. V  
can drive up to 200μA of load  
voltage on VT2 with a polarity set by the PS pin, TO2 is  
REF  
current and up to 1000pF of capacitive load. For larger  
load capacitances insert 1kΩ between V  
to ensure stability. Leave V  
pulled low. Tie VT2 to V if unused.  
CC  
and the load  
REF  
open if unused.  
REF  
BLOCK DIAGRAM  
9
16  
V
CC  
TMR  
V
CC  
400k  
VH1  
20  
CH1  
UV  
15  
UV PULSE  
GENERATOR  
+
CL1  
OSCILLATOR  
VL1  
VH2  
+
2V  
V
+
1
2
UVLO  
V
CC  
CH2  
CC  
400k  
OV  
+
14  
+
CL2  
OV PULSE  
GENERATOR  
200kΩ  
VL2  
3
+
1.2V  
V
1.8V  
REF  
11  
1.3MΩ  
200k  
0.5V  
500k  
V
CC  
400k  
400k  
TO2  
VT2  
CT2  
13  
4
TO1/TO2  
PULSE  
GENERATOR  
+
UVLO  
V
CC  
400k  
TO1  
+
CT1  
12  
VT1  
5
8
3 STATE  
DECODE  
T TO V  
CONVERTER  
V
PTAT  
1
3 STATE  
DECODE  
+
DS  
D
D
PS  
19  
GND  
18  
7
6
17  
2995 BD  
2995f  
8
LTC2995  
OPERATION  
Overview  
on the process depended variable I . Measuring the same  
S
diode (with the same value I ) at two different currents  
S
The LTC2995 combines the functionality of a temperature  
measurement and monitor device with a dual voltage  
supervisor. It provides a buffered voltage proportional to  
the absolute temperature of either an internal or a remote  
(I and I ) yields an expression independent of I :  
D1  
D2  
S
q
η t k  
V – V  
D2  
D1  
T =  
t
I
D2  
diode(V  
)andcomparesthisvoltagetothresholdsthat  
ln  
PTAT  
I
D1  
can be set by external resistor dividers from the on-board  
reference (V ).  
REF  
Series Resistance °ancellation  
The LTC2995 also provides four voltage threshold  
inputs that are continuously compared to an internal 0.5V  
reference allowing two systems voltages to be monitored  
for undervoltage and overvoltage conditions.  
Resistanceinserieswiththeremotediodecausesapositive  
temperature error by increasing the measured voltage at  
each test current. The composite voltage equals:  
Diode Temperature Sensor  
I
kT  
= η t ln  
q
⎛ ⎞  
D
V + V  
+ R tI  
S D  
⎜ ⎟  
D
ERROR  
⎝ ⎠  
I
Temperature measurements are conducted by measuring  
the voltage of either an internal or an external diode with  
multiple test currents. The relationship between diode  
voltage V and diode current I can be solved for absolute  
S
The LTC2995 removes this error term from the sensor  
signal by subtracting a cancellation voltage V . A  
resistance extraction circuit uses one additional current  
measurement to determine the series resistance in the  
measurementpath.Oncethecorrectvalueoftheresistoris  
D
D
CANCEL  
Temperature in degrees Kelvin T:  
q
η t k  
V
D
T =  
t
I
⎛ ⎞  
D
determined,V  
equalsV  
.Nowthetemperature  
CANCEL  
ERROR  
ln  
⎜ ⎟  
⎝ ⎠  
I
to voltage converter input signal is free from errors due  
to series resistance.  
S
where I is a process dependent factor on the order of  
S
LTC2995cancancelseriesresistancesupseveralhundred  
ohms (see Typical Performance Characteristics curves).  
Higher series resistances cause the cancelation voltage  
to saturate.  
–13  
10 A, η is the diode ideality factor, k is the Boltzmann  
constantandqistheelectroncharge.Thisequationshows  
arelationshipbetweentemperatureandvoltagedependent  
2995f  
9
LTC2995  
APPLICATIONS INFORMATION  
Temperature Measurements  
°hoosing an External Sensor  
The LTC2995 continuously measures the sensor diode at  
differenttestcurrentsandgeneratesavoltageproportional  
The LTC2995 is factory calibrated for an ideality factor of  
1.004, which is typical of the popular MMBT3904 NPN  
transistor. Semiconductor purity and wafer level process-  
ing intrinsically limit device-to-device variation, making  
these devices interchangeable between manufacturers  
withatemperatureerroroftypicallylessthan0.5°C.Some  
recommended sources are listed in Table 2:  
to the absolute temperature of the sensor at the V  
pin.  
PTAT  
The voltage at V  
is updated every 3.5ms.  
PTAT  
The gain of V  
is calibrated to 4mV/K for the measure-  
PTAT  
ment of the internal diode as well as for remote diodes  
with an ideality factor of 1.004.  
Table ꢀ Recommended Transistors for Use As Temperature  
Sensors  
V
PTAT  
TKELVIN  
=
(η = 1.004)  
MANUFA°TURER  
PART NUMBER  
PA°KAGE  
4mV/K  
Fairchild  
Semiconductor  
MMBT3904  
SOT-23  
If an external sensor with an ideality factor different from  
1.004 is used, the gain of V  
will be scaled by the ratio  
Central  
Semiconductor  
CMBT3904  
SOT-23  
PTAT  
oftheactualidealityfactor(η )to1.004. Inthesecases,  
ACT  
Diodes Inc.  
On Semiconductor  
NXP  
MMBT3904  
MMBT3904LT1  
MMBT3904  
MMBT3904  
UMT3904  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC-70  
the temperature of the external sensor can be calculated  
from V  
by:  
PAT  
V
1.004  
PTAT  
Infineon  
TKELVIN  
=
4mV/K  
η
Rohm  
ACT  
Discrete two terminal diodes are not recommended as  
remote sensing devices as their ideality factor is typically  
much higher than 1.004. Also MOS transistors are not  
suitable as they don’t exhibit the required current to tem-  
peraturerelationship. Furthermoregolddopedtransistors  
(low beta), high frequency and high voltage transistors  
should be avoided as remote sensing devices.  
Temperature in degrees Celsius can be deduced from  
degrees Kelvin by:  
T
= T  
– 273.15  
KELVIN  
CELSIUS  
The three-state diode select pin (DS) determines whether  
the temperature of the external or the internal diode is  
measured and displayed at V  
as described in Table 1.  
PTAT  
Table ±. Diode Selection  
°onnecting an External Sensor  
DꢁODE LO°ATꢁON  
Internal  
DS PꢁN  
The change in sensor voltage per °C is hundreds of  
microvolts, so electrical noise must be kept to a mini-  
V
CC  
External  
GND  
+
mum. Bypass D and D with a 470pF capacitor close to  
the LTC2995 to suppress external noise. Recommended  
shielding and PCB trace considerations for best noise  
immunity are illustrated in Figure 1.  
Both  
Open  
If the DS pin is left open, the LTC2995 measures both  
diodesalternatelyandV  
changesevery30msfromthe  
PTAT  
GND SHIELD TRACE  
voltage corresponding to the temperature of the internal  
LTC2995  
+
sensor to the voltage corresponding to the temperature  
D
470pF  
+
D
of the external sensor. If D is tied to V , the LTC2995  
CC  
GND  
measures the internal diode regardless of the state of  
2995 F01  
NPN SENSOR  
the DS pin.  
Figure ±. Recommended P°B Layout  
2995f  
10  
LTC2995  
APPLICATIONS INFORMATION  
Leakage currents at D affect the precision of the remote  
temperature measurements. 100nA leakage current leads  
to an additional error of 2°C (see Typical Performance  
Characteristics).  
+
components.Noisearoundoddmultiplesof6kHz( 20%)is  
amplified by the measurement algorithm and converted at  
a DC offset in the temperature measurement (see Typical  
Performance Characteristics).  
Note that bypass capacitors greater than 1nF will cause  
settling time errors in the different measurement cur-  
rents and therefore introduce an error in the temperature  
measurement (see Typical Performance Characteristics).  
The LTC2995 can withstand up to 4kV of electrostatic  
discharge (ESD, human body). ESD beyond this voltage  
can damage or degrade the device including lowering the  
remote sensor measurement accuracy due to increased  
+
leakage currents on D or D .  
The LTC2995 compensates series resistance in the  
measurement path and thereby allows accurate remote  
temperature measurements even with several meters of  
distance between the sensor and the device. The cable  
lengthbetweenthesensorandtheLTC2995isonlylimited  
To protect the sensing inputs against larger ESD strikes,  
external protection can be added using TVS diodes to  
ground (Figure 3). Care must be taken to choose diodes  
with low capacitance and low leakage currents in order  
nottodegradetheexternalsensormeasurementaccuracy  
(see Typical Performance Characteristics curves).  
+
by the mutual capacitance introduced between D and  
D which degrades measurement accuracy (see Typical  
Performance Characteristics).  
LTC2995  
10Ω  
10Ω  
For example an AT6 cable with 50pF/m should be kept  
shorter than ~20m to keep the capacitance less than 1nF.  
+
D
D
MMBT3904  
220pF  
To save wiring, the cathode of the remote sensor can  
GND  
2995 F03  
PESD5Z6.0  
also be connected to remote GND and D to local GND  
as shown below.  
Figure 3. ꢁncreasing ESD Robustness with TVS Diodes  
LTC2995  
+
D
470pF  
2N3904  
To make the connection of the cable to the IC polarity  
insensitive during installation, two sensor transistors  
with opposite polarity at the end of a two wire cable can  
be used as shown on Figure 4.  
D
GND  
2995 F02  
Figure ꢀ. Single Wire Remote Temperature Sensing  
LTC2995  
+
The temperature measurement of the LTC2995 relies only  
on differences between the diode voltage at multiple test  
circuits.ThereforeDCoffsetssmallerthan300mVbetween  
remote and local GND do not impact the precision of the  
temperature measurement. The cathode of the sensor  
can accommodate modest ground shifts across a system  
which is beneficial in applications where a good thermal  
connectivity of the sensor to a device whose temperature  
is to be monitored (shunt resistor, coil, etc.) is required.  
Care must be taken if the potential difference between  
D
MMBT3904  
470pF  
D
GND  
2995 F04  
Figure 4. Polarity ꢁnsensitive Remote Diode Sensor  
Again, care must be taken that the leakage current of the  
second transistor does not degrade the measurement  
accuracy.  
the cathode and D does not only content DC but also AC  
2995f  
11  
LTC2995  
APPLICATIONS INFORMATION  
Output Noise Filtering  
pulledlowifthevoltageV  
fallsduringfiveconsecutive  
PTAT  
conversions below the undertemperature threshold VT1.  
Once pulled low, TO1 is released high again if V rises  
The V  
output typically exhibits 0.6mV RMS (0.25°C  
PTAT  
PTAT  
RMS) noise. For applications which require lower noise  
digital or analog averaging can be applied to the output.  
Choose the averaging time according to:  
above VT1 plus an additional hysteresis of about 20mV.  
Accordingly, T02 is pulled low if the voltage V rises  
PTAT  
abovetheovertemperaturethresholdVT2and–oncepulled  
2
low– TO2 is released high if V falls below VT2 minus  
PTAT  
[
]
°
0.01 C Hz  
anadditionalhysteresisofabout20mV.LeavingPSuncon-  
nected configures both VT1 and VT2 as overtemperature  
thresholds and connecting PS to GND configures them  
both as undertemperature thresholds. If the internal and  
external sensors are monitored alternately by leaving DS  
unconnected, VT1 becomes a dedicated threshold for the  
internal sensor and VT2 becomes a dedicated threshold  
for the external sensor.  
tAVG  
=
T
NOISE  
where t  
is the averaging time and T  
the desired  
NOISE  
AVG  
temperature noise in °C RMS. For example, if the desired  
noiseperformanceis0.015°CRMS,settheaveragingtime  
to one second. See Typical Performance Characteristics.  
Temperature Monitoring  
Temperature Monitor Design Example  
The LTC2995 continuously compares the voltage at V  
PTAT  
The LTC2995 can be configured to give an early warning  
if the temperature of the internal sensor rises above 60°C  
and an alarm if the temperature passes 90°C. Tie the DS  
to the voltages at the pins VT1 and VT2 to detect either an  
overtemperature(OT)orundertemperature(UT)condition.  
The VT1 comparator output drives the open-drain logic  
output pin TO1 and the VT2 comparator output drives the  
open-drain logic output pin TO2. The polarity of these  
comparisons is configured via the three-state polarity  
select pin (PS) (Table 3).  
pin to V to select the internal sensor and leave the pin  
CC  
PS unconnected to configure both input voltages VT1 and  
VT2 as overtemperature thresholds. The voltages at VT1  
and VT2 are set to:  
mV  
K
Table 3. Temperature Polarity Selection  
VT1 =(60K + 273.15K) • 4  
= 1.332V  
= 1.452V  
PS PꢁN  
FUN°TꢁON  
°ONDꢁTꢁON OUTPUT  
VT1 Undertemperature  
Threshold  
mV  
K
V
PTAT  
V
PTAT  
V
PTAT  
V
PTAT  
V
PTAT  
V
PTAT  
< VT1 TO1 Pulled Low  
> VT2 TO2 Pulled Low  
> VT1 TO1 Pulled Low  
> VT2 TO2 Pulled Low  
< VT1 TO1 Pulled Low  
< VT2 TO2 Pulled Low  
VT2 =(90K + 273.15K) • 4  
V
CC  
VT2 Overtemperature  
Threshold  
WhenV  
reachesthethresholdvoltageonpinVT1,TO1  
PTAT  
VT1 Overtemperature  
Threshold  
is pulled low indicating an overtemperature early warning.  
If the temperature reaches 90°C TO2 is also pulled low,  
indicating an overtemperature alarm.  
Open  
GND  
VT2 Overtemperature  
Threshold  
VT1 Undertemperature  
Threshold  
Once the temperature drops below each threshold, the  
corresponding TO pins will return high after a time-out-  
VT2 Undertemperature  
Threshold  
period (t  
) set by the capacitor connected to TMR.  
UOTO  
If pin PS is connected to V , the voltage on VT1 becomes  
CC  
an undertemperature threshold and the voltage on VT2  
an overtemperature threshold. In this configurationTO1 is  
2995f  
12  
LTC2995  
APPLICATIONS INFORMATION  
Temperature Thresholds  
The following design procedure can be used to size the  
resistive divider.  
The threshold voltages at VT1 and VT2 can be set with  
the 1.8V reference voltage (V ) and a resistive divider  
1. Calculate Threshold Voltages:  
REF  
as shown in Figure 5.  
mV  
K
η
ACT  
1.004  
VT1 = T1• 4  
η
mV  
K
V
REF  
= 1.8V  
V
ACT  
PTAT  
SLOPE =  
tꢀꢁꢀ  
ꢂꢃꢄꢄꢁ  
mV  
K
η
ACT  
1.004  
VT2 = T2 • 4  
1.8V  
VT2  
R
TC  
R
where η denotes the actual ideality factor if an external  
TB  
ACT  
VT1  
sensor is used and T1 and T2 are the desired threshold  
O.8V  
temperatures in degrees Kelvin.  
R
TA  
2. Choose R to obtain the desired VT1 threshold for  
TA  
T
a desired current through the resistive divider  
2995 F05  
O
200k  
T
1
T
ꢁꢅꢄL  
2
(I ):  
REF  
Figure 5. Temperature Thresholds  
VT1  
R
=
TA  
I
REF  
3. Choose R to obtain the desired VT2 threshold:  
TB  
VT2 – VT1  
R
=
TB  
I
REF  
3.3V  
+
D
DS  
V
PS  
LTC2995  
CC  
V
CC  
V
CC  
400k  
TO2  
+
1.2V  
1.8V  
V
REF  
OT ALARM  
200k  
400k  
R
TC  
V
CC  
VT2  
VT1  
+
400k  
TO1  
TO1/TO2  
PULSE  
GENERATOR  
UVLO  
R
R
TB  
OT WARNING  
+
V
PTAT  
T/V  
TA  
D
GND  
2995 F06  
Figure 6. Monitoring ꢁnternal Temperature with Two Overtemperature Thresholds  
2995f  
13  
LTC2995  
APPLICATIONS INFORMATION  
V
4. Finally R is determined by:  
n
TC  
LTC2995  
1.8V – VT2  
R
R
C
B
R
=
V
+
Hn  
TC  
I
REF  
UV  
OV  
n
IntheTemperatureMonitorexamplediscussedearlierwith  
thresholds at VT1 = 60°C and VT2 = 90°C and a desired  
+
0.5V  
reference current of 10μA, the required values for R ,  
TA  
+
R
and R can be calculated as:  
TB  
TC  
n
V
Ln  
1.332V  
10ꢀA  
R
=
=
=
= 133.2k  
TA  
TB  
TC  
R
A
2995 F07  
1.452V – 1.332V  
10ꢀA  
Figure 7. 3-Resistor Positive UV/OV Monitoring  
R
R
= 12k  
For supply monitoring, V is the desired nominal operat-  
n
ing voltage, I is the desired nominal current through the  
n
1.8V – 1.452V  
resistive divider, V is the desired overvoltage trip point,  
= 34.8k  
OV  
10ꢀA  
and V is the desired undervoltage trip point.  
UV  
1. R is chosen to set the desired trip point for the  
A
Voltage Monitoring  
overvoltage monitor:  
In addition to temperature measurement, the LTC2995  
features a low power dual voltage monitoring circuit. Each  
voltage monitor has two inputs (VH1/VL1 and VH2/VL2)  
for detecting undervoltage and overvoltage conditions. If  
either VH1 or VH2 falls below 0.5V (typical), the LTC2995  
communicates an undervoltage condition by pulling UV  
low. Similar, an overvoltage condition is flagged by pulling  
OV low if either VL1 or VL2 rises above 0.5V.  
0.5V  
V
N
R =  
(1)  
A
I
V
N
OV  
2. Once R is known, R is chosen to set the desired  
A
B
trip point for the undervoltage monitor:  
0.5V  
V
N
R =  
– R  
(2)  
B
A
I
V
UV  
N
When configured to monitor a positive voltage Vn using  
the 3-resistor circuit configuration shown in Figure 5,  
3. Once, R and R are known, R is determined by:  
A
B
C
V
will be connected to the high side tap of the resistive  
Hn  
V
divider and V will be connected to the low side tap of  
N
Ln  
R =  
– R – R  
(3)  
C
A
B
the resistive divider.  
I
N
Voltage Monitor Design Procedure  
Voltage Monitor Example  
Thefollowing3-stepdesignprocedureselectsappropriate  
resistances to obtain the desired UV and OV trip points  
for the voltage monitor circuit in Figure 7.  
A typical voltage monitor application is shown in Figure 2.  
The monitored voltage is a 5V 10% supply. Nominal  
current in the resistive divider is 10ꢀA.  
1. Find R to set the OV trip point of the monitor:  
A
0.5V 5V  
10ꢀA 5.5V  
R =  
45.3k  
A
2995f  
14  
LTC2995  
APPLICATIONS INFORMATION  
The two extreme conditions, with a relative accuracy of  
1.5% and resistance accuracy of 1%, result in:  
2. Find R to set the UV trip point of the monitor:  
B
0.5V 5V  
10ꢀA 4.5V  
R =  
– 453 10k  
B
R t 0.99  
C
V
= 0.5V t 0.985 t 1+  
UV(MIN)  
(R + R ) t 1.01  
A
B
3. Determine R to complete the design:  
C
and  
5V  
10ꢀA  
R =  
– 453Ω – 100Ω ≈ 442k  
C
R t 1.01  
C
V
= 0.5V t 1.015 t 1+  
UV(MAX)  
(R + R ) t 0.99  
A
B
Power-Up and Undervoltage Lockout  
R
C
= 8  
As soon as V reaches approximately 1V during  
For a desired trip point of 4.5V,  
Therefore,  
CC  
R + R  
A
B
power-up,theOV aswellasTO1 andTO2 weakly pull to V  
CC  
while the UV output asserts low indicating an undervolt-  
0.99  
1.01  
age lockout condition. Above V = 2V (typical), the VH  
CC  
V
= 0.5V t 0.985 t 1+ 8  
= 4.3545V  
= 4.650V  
UV(MIN)  
and VL inputs take control. Once both VH inputs and V  
CC  
are valid, an internal timer is started. After an adjustable  
delay time, UV weakly pulls high.  
and  
1.01  
0.99  
When V falls below 1.9V, the LTC2995 indicates again  
CC  
V
= 0.5V t 1.015 t 1+ 8  
UV(MAX)  
an undervoltage lockout (UVLO) condition by pulling low  
UV while OV is cleared.  
Glitch ꢁmmunity  
Threshold Accuracy  
In any supervisory application, noise on the monitored DC  
voltage can cause spurious resets. To solve this problem  
withoutaddinghysteresistotheVH/VLcomparators,which  
would add error to the trip voltage, the LTC2995 lowpass  
filters the output of the comparator. This filter causes the  
output of the comparator to be integrated before assert-  
ing the UV or OV logic. Any transient at the input of the  
comparator must be of sufficient magnitude and duration  
before the comparator will trigger the output logic. The  
TypicalPerformanceCharacteristicssectionshowsagraph  
oftheTypicalTransientDurationvsComparatorOverdrive.  
Resetthresholdaccuracyisimportantinasupplysensitive  
system. Ideally, such a system would only reset if supply  
voltages fell outside the exact threshold for a specified  
margin. All LTC2995 VHn/VLn inputs have a relative  
threshold accuracy of 1.5% over the full operating  
temperature range. For example, when the LTC2995 is  
configured to monitor a 5V input with a 10% tolerance,  
the desired UV trip point is 4.5V. Because of the 1.5%  
relative accuracy of the LTC2995, the UV trip point can be  
anywherebetween4.433Vand4.567Vwhichis4.5V 1.5%.  
Likewise, the accuracy of the resistances chosen for R ,  
A
In temperature monitoring, the voltage at V  
must  
PTAT  
R , and R can affect the UV and OV trip points as well.  
B
C
exceed a threshold for five consecutive temperature up-  
Using the previous example, if the resistances used to set  
the UV trip point have 1% accuracy, the UV trip range can  
grow to between 4.354V and 4.650V. This is illustrated in  
the following calculations.  
date intervals before the respective TO pin is pulled low.  
Once the V  
voltage crosses back the threshold with  
PTAT  
an additional 20mV of hysteresis, the respective TO pin  
is released after a single update interval and an additional  
delay adjustable by the capacitor on TMR.  
The UV trip point is given as:  
R
C
V
= 0.5V t 1+  
UV  
R + R  
A
B
2995f  
15  
LTC2995  
APPLICATIONS INFORMATION  
Timing of Alert Outputs  
Digital Output °haracteristics  
The LTC2995 has an adjustable timeout period (t  
)
The DC characteristics of the UV, OV, TO1 and TO2 pull-up  
and pull-down strength are shown in the Typical Perfor-  
manceCharacteristicssection.Eachpinhasaweak400kΩ  
UOTO  
that holds UV, OV, TO1 or TO2 asserted after any faults  
have cleared. This delay will minimize the effect of input  
noise with a frequency above 1/t  
.
internal pull-up to V and a strong pull-down to ground  
UOTO  
CC  
and can be pulled above V .  
CC  
A voltage monitoring example: When any VH drops below  
its threshold, the UV pin asserts low. When all VH inputs  
recover above their thresholds, the output timer starts. If  
all inputs remain above their thresholds when the timer  
finishes, the UV pin weakly pulls high. However, if any  
input falls below its threshold during this timeout period,  
the timer resets and restarts when all inputs are again  
above the thresholds.  
This arrangement allows these pins to have open-drain  
behavior while possessing several other beneficial char-  
acteristics. The weak pull-up eliminates the need for an  
external pull-up resistor when the rise time on the pin is  
notcritical.Ontheotherhand,theopendrainconfiguration  
allows for wired-OR connections and can be useful when  
more than one signal needs to pull-down on the output.  
A temperature monitoring example: Tying PS to V  
At V = 1V, the weak pull-up current is barely turned on.  
CC  
CC  
configures TO2 as overtemperature output. In case of  
an overtemperature condition pin TO2 asserts low. The  
output timer starts when the temperature crosses back  
below the threshold minus the temperature hysteresis If  
the temperature remains below the threshold, the timer  
finishes and pin TO2 releases high.  
Therefore, an external pull-up resistor of no more than  
100k is recommended on the pin if the state and pull-up  
strength of the pin is crucial at very low V .  
CC  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the pin is increased. Therefore, if it  
is connected in a wired-OR connection, the pull-down  
strength of any single device needs to accommodate this  
additional pull-up strength.  
Selecting the Timing °apacitor  
Thetimeoutperiod(t )fortheLTC2995isadjustablein  
UOTO  
order to accommodate a variety of applications. Connect-  
ing a capacitor, C , between the TMR pin and ground  
Output Rise and Fall Time Estimation  
TMR  
The UV, OV, TO1 and TO2 outputs have strong pull-down  
capability. The following formula estimates the output fall  
time (90% to 10%) for a particular external load capaci-  
sets the timeout period. The value of capacitor needed for  
a particular timeout period is:  
t
– 0.5ms  
8[ms / nF]  
tance (C ):  
LOAD  
UOTO  
C
=
TMR  
t
≈ 2.2 • R • C  
PD LOAD  
FALL  
The Reset Timeout Period vs Capacitance graph found in  
theTypicalPerformanceCharacteristicssectionshowsthe  
desired delay time as a function of the value of the timer  
capacitor that should be used. Leaving the TMR pin open  
with no external capacitor generates a timeout period of  
approximately 500μs. For long timeout periods, the only  
limitation is the availability of a large value capacitor with  
low leakage. Capacitor leakage current must not exceed  
the minimum TMR charging current of 1.5μA.  
where R is the on-resistance of the internal pull-down  
PD  
transistor estimated to be typically 40Ω at V > 1V and  
DD  
at room temperature (25°C), and C  
is the external  
LOAD  
load capacitance on the pin. Assuming a 150pF load  
capacitance, the fall time is about 13ns. The rise time on  
the UV, OV, TO1 and TO2 pins is limited by a 400k pull-up  
resistance to V . A similar formula estimates the output  
DD  
rise time (10% to 90%):  
t
≈ 2.2 • R • C  
PU LOAD  
RISE  
Tying the TMR pin to V will bypass the timeout period  
CC  
where R is the pull-up resistance.  
PU  
and no delay will occur.  
2995f  
16  
LTC2995  
TYPICAL APPLICATIONS  
±±ꢂ0 Voltage Monitor (±.8V and ꢀ.5V) and ꢁnternal/Remote Overtemperature Monitor  
2.5V  
1.8V  
POWER  
SUPPLIES  
V
CC  
+
D
PS  
0.1ꢀF  
470pF  
MMBT390  
DS  
124k  
10.2k  
45.3k  
D
VH1  
LTC2995  
V
PTAT  
OT T > 125°C FOR EXTERNAL SENSOR  
VL1  
VH2  
VL2  
TO2  
OT T > 75°C FOR INTERNAL SENSOR  
194k  
TO1  
OV  
+10%  
–10%  
10.2k  
UV  
V
REF  
VT2  
VT1  
GND  
TMR  
45.3k  
5nF  
20k  
20k  
140k  
2995 TA02  
±ꢀꢂ0 Voltage Monitor (±ꢀV and 5V) and ꢂ1° to 7ꢂ1° ꢁnternal UT/OT Monitoring with °ommon  
Temperature and Powergood LED  
12V  
5V  
POWER  
SUPPLIES  
V
CC  
+
2.15k  
D
PS  
0.1ꢀF  
DS  
113k  
2.15k  
4.12k  
D
VH1  
LTC2995  
V
PTAT  
OT T > 70°C  
UT T < 0°C  
+20%  
VL1  
VH2  
VL2  
TO2  
442k  
TO1  
OV  
21.5k  
–20%  
UV  
TEMPERATURE AND  
POWER GOOD LED  
V
REF  
VT2  
VT1  
GND  
TMR  
41.2k  
2995 TA03  
43k  
28k  
110k  
2995f  
17  
LTC2995  
TYPICAL APPLICATIONS  
°elsius Thermometer and ±±ꢂ0 Voltage Monitor (±.8V and ꢀ.5V)  
2.5V  
1.8V  
POWER  
SUPPLIES  
0.1ꢀF  
+
V
D
CC  
150k  
1.8k  
470pF  
100k  
MMBT3904  
0.1ꢀF  
PS  
5V  
D
DS  
124k  
10.2k  
45.3k  
1.8V  
+
V
REF  
VH1  
10mV/°C  
0V AT 0°C  
LTC1150  
LTC2995  
1k  
62k  
4mV/K  
V
PTAT  
VL1  
VH2  
VL2  
194k  
143k  
1ꢀF  
+10%  
–10%  
–5V  
OV  
UV  
10.2k  
VT2  
VT1  
GND TMR TO2 TO1  
45.3k  
5nF  
2995 TA04  
±±ꢂ0 Voltage Monitor (±ꢀV and 5V) and –ꢀꢂ1° to 7ꢂ1° ꢁnternal UT/OT Monitor with  
Manual Undervoltage Reset Button  
12V  
5V  
POWER  
SUPPLIES  
V
CC  
+
D
PS  
0.1ꢀF  
DS  
115k  
1k  
D
VH1  
MANUAL  
RESET BUTTON  
LTC2995  
V
PTAT  
(NORMALLY OPEN)  
OT T > 70°C  
UT T < –20°C  
+10%  
VL1  
VH2  
VL2  
TO2  
SYSTEM  
4.53k  
44.2k  
1k  
TO1  
OV  
–10%  
RESET  
UV  
V
REF  
VT2  
VT1  
GND  
TMR  
4.53k  
2995 TA05  
43k  
36k  
102k  
2995f  
18  
LTC2995  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UD Package  
ꢀꢂ-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1720 Rev A)  
0.70 0.05  
3.50 0.05  
(4 SIDES)  
1.65 0.05  
2.10 0.05  
PACKAGE  
OUTLINE  
0.20 0.05  
0.40 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH  
R = 0.20 TYP  
OR 0.25 × 45°  
CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
R = 0.05  
TYP  
19 20  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.65 0.10  
(4-SIDES)  
(UD20) QFN 0306 REV A  
0.200 REF  
0.20 0.05  
0.40 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2995f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion th a t the in ter c onne c t ion of i t s cir cui t s a s de s cr ibed her ein w ill not in fr inge on ex is t ing p a ten t r igh t s.  
19  
LTC2995  
TYPICAL APPLICATION  
Dual OV/UV ±±ꢂ0 Supply and 751°/±ꢀ51° OT/OT Remote Temperature Monitor  
ASIC/  
CPU/  
FPGA  
2.5V  
1.2V  
+
D
470pF  
V
CC  
D
0.1ꢀF  
PS  
DS  
64.4k  
10.2k  
45.3k  
VH1  
LTC2995  
A/D  
V
PTAT  
OT T > 125°C  
OT T > 75°C  
+10%  
VL1  
VH2  
VL2  
TO2  
194k  
TO1  
OV  
10.2k  
–10%  
UV  
TMR  
GND  
5nF  
VT1  
VT2  
V
REF  
45.3k  
140k  
20k  
20k  
2995 TA06  
RELATED PARTS  
PART NUMBER DES°RꢁPTꢁON  
°OMMENTS  
2
LTC2990  
LTC2991  
LTC2997  
LTC2900  
LTC2901  
LTC2902  
LTC2903  
LTC2904  
LTC2905  
LTC2906  
Remote/Internal Temperature, Voltage, Current Monitor I C Interface  
2
Remote/Internal Temperature Sensor  
Remote/Internal Temperature Sensor  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Precision Quad Supply Monitor  
I C Interface, Eight Single-Ended Inputs  
Analog V  
Output Voltage  
PTAT  
Adjustable RESET, 10-Lead MSOP and 3mm × 3mm 10-Lead DFN  
Adjustable RESET and Watchdog Timer, 16-Lead SSOP Package  
Adjustable RESET and Tolerance, 16-Lead SSOP Package, Margining Functions  
6-Lead SOT-23 Package, Ultralow Voltage Reset  
3-State Programmable Precision Dual Supply Monitor Adjustable Tolerance, 8-Lead SOT-23 Package  
3-State Programmable Precision Dual Supply Monitor Adjustable RESET and Tolerance, 8-Lead SOT-23 Package  
Precision Dual Supply Monitor 1-Selectable and  
One Adjustable  
Separate V Pin, RST/RST Outputs  
CC  
LTC2907  
LTC2908  
LTC2909  
Precision Dual Supply Monitor 1-Selectable and  
One Adjustable  
Separate V , Adjustable Reset Timer  
CC  
Precision Six Supply Monitor (Four Fixed and Two  
Adjustable)  
8-Lead SOT-23 and DDB Packages  
Prevision Dual Input UV, OV and Negative Voltage  
Monitor  
2 ADJ Inputs, Monitors Negative Voltages  
LTC2912  
LTC2913  
LTC2914  
Single UV/OV Positive Voltage Monitor  
Dual UV/OV Positive Voltage Monitor  
Separate V Pin, 8-Lead TSOT and 3mm × 2mm DFN Packages  
CC  
Separate V Pin, 10-Lead MSOP and 3mm × 3mm DFN Packages  
CC  
Quad UV/OV Positive/Negative Voltage Monitor  
Separate V Pin, 16-Lead SSOP and 5mm × 2mm DFN Packages  
CC  
2995f  
LT 0412 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY